Huawei’s 10 Smart PV Trends for 2025

Huawei’s 10 Smart PV Trends for 2025

With Solar Energy coming into its own in the past 5 years, talk is already about the massive impact it can have on the energy grid. Smart PV’s (Photovoltaics) is a must, with higher share of solar energy, without disrupting grid stability. Hence, the new term, Smart PV’s. Huawei, a global leader in the inverters space, has engaged with experts to come up with its own predictions about 10 key trends  when it comes to Smart PV’s.

Looking at the emerging ICT technologies, such as AI, cloud, big data, and 5G, and  their critical role in influencing the evolution of the sector, these trends encompass four dimensions: lower levelized cost of electricity (LCOE), power grid friendliness, intelligent convergence, and security and trustworthiness.

Coming from Huawei, a firm that has moved quickly to build a lead position in the sector with its offerings that leverage its strong presence in the electronics sector, these trends deserve a serious look for anyone keen to prepare for the solar future. So lets dive right in.

Trend 1: Digitalization

Key point: More than 90% of global PV plants will be digitalized.

Despite the booming global PV market, there are still many dumb devices in PV plants, from power generation to communications. These devices cannot be effectively monitored, nor can they provide fault alarm. With the rapid development of digital technologies such as 5G and cloud, it is expected that more than 90% of PV plants will be fully digitalized by 2025, making it possible for PV plants to be simple, intelligent, and efficient management.

AI-driven Smart Upgrades

Trend 2: AI-driven Smart Upgrades

Key point: Over 70% PV plants will apply AI techniques.

The in-depth integration of AI and PV will facilitate mutual sensing and interconnection between devices, and will improve power generation and O&M efficiency through collaborative optimization. AI techniques can offer promising new avenues for PV systems, including: proactive identification and protection of PV module and device faults with AI diagnosis algorithms; tracker algorithm optimization with massive plant data and self-learning for higher yields; and AI-aided solar-storage synergy to automatically optimize PV-storage plant revenue. As LCOE continues to decrease and O&M complexity increases, AI techniques will be highly likely to widely apply in PV plants.

Trend 3: Unmanned PV Plants

Key point: More than 80% of the work in PV plants will be unmanned.

With the ascendance of AI and the Internet of Things (IoT), intelligent products and services will bring convenience to the whole PV solution. With integrated expert experiences and continuous self-learning, AI will be widely deployed to replace O&M experts in many diagnostic and decision-making functions. Drone inspection and robot-based automatic O&M will handle dangerous and repetitive O&M work that requires a continual high degree of accuracy, for enhanced productivity and safety in PV plants. As is estimated, it is expected that PV plants in the future will be fully unmanned.

Proactive Support for Power Grids

Trend 4: Proactive Support for Power Grids

Key point: PV plants will shift from grid-adapting to grid-supporting.

The increasing penetration level of power-electronic-interfaced energy will undermine power grid strength, hindering the broader application of PV systems. Over the next 5 years, PV plants must gradually evolve from adapting to the power grid, to supporting the power grid. To this end, inverters should possess capabilities such as wide short circuit ratio (SCR) adaptability, capability to control harmonic current within 1%, consecutive high/low voltage ride-through, and fast frequency regulation, which are necessary for grid connection.

Solar + Storage

Trend 5: Solar + Storage

Key point: The proportion of PV systems coupled with energy storage will exceed 30%.

With the greater penetration of new energy sources, power grids will have increasingly stringent requirements for frequency regulation and peak shaving. In the meantime, battery costs are decreasing with technology advancement. It is projected that energy storage will work in tandem with PV systems, and become a critical component. Projections indicate that by 2025, the proportion of PV systems with energy storage will exceed 30%.

Trend 6: Virtual Power Plants

Key point: More than 80% of residential systems will connect to Virtual Power Plant (VPP) networks.

Over the next 5 years, ICT technologies, such as 5G, blockchain, and cloud services, will be widely applied in distributed power plants, forming VPPs for collaborative management, and participating in the scheduling, transaction, and auxiliary services for power systems. The development of VPP technology will inspire new business models and attract new market players in distributed PV scenarios, serving as an engine of growth for distributed PV.

Trend 7: Active Safety

Key point: Arc-fault circuit interrupter (AFCI) will become a must-have feature in distributed PV rooftop systems, and will be incorporated into international industry standards.

With the broader application of distributed PV, building and personal safety has become a major concern. PV arcing risks caused by the poor contact of nodes in PV modules, poor connections from PV connectors, or aged or broken cables, have become a pressing matter in the industry. To mitigate such risks, AFCI will become a standard function for distributed PV rooftop systems, and will be incorporated into international industry standards.

Trend 8: Higher Power Density

Key point: Inverter power density will increase by more than 50%.

With the trend of lower LCOE of solar, there calls higher requirements in higher power of a single module and easy inverter maintenance. To achieve this, higher power density is required. With breakthroughs in research of wide-bandgap semiconductors, such as SiC and GaN, as well as advanced control algorithms, inverter power density is expected to increase by more than 50% in the next 5 years.

Trend 9: Modular Design

Key point: Core components such as inverters, PCS and energy storage devices will adopt modular design.

Inverters, PCSs, and energy storage devices are key components in a PV plant, which greatly affect the availability of the entire PV plant system. As the capacity and complexity of PV plants increase, the traditional, expert-driven approach for onsite maintenance will be too costly. Modular design will become mainstream, as it enables flexible deployment, smooth expansion, and expert-free maintenance, greatly reducing O&M costs and improving system availability.

Trend 10: Security and Trustworthiness

Key point: Security and Trustworthiness has become a necessary requirement for PV plants.

The increase in the cumulative capacity of global PV plants, and greater complexity of network architecture, which makes the network security risks of PV plants increasing. In addition, there are more stringent requirements for user privacy and security for distributed PV plants. All these trends suggest that PV plants need to possess security and trustworthiness capabilities in terms of reliability, availability, security, safety, resilience, and privacy.

What these trend predictions make clear is that as solar energy moves to centre stage, smart PV  will be the most critical aspect of enabling it. The humble inverter from 5 years ago will yet go on to become the heart of the energy management grid, a fact that global inverter firms, including Huawei are alive to, and working furiously to achieve. The shot deadline for these to happen, ie, 2025, indicates that on most of these trends, the early work has already started, or is moving as we read. Solar Storage for instance, could clearly be big by 2025,or needs to be, for the world to make a decisive shift away from its current trajectory of incremental renewable energy growth.

"Want to be featured here or have news to share? Write to info[at]saurenergy.com
      SUBSCRIBE NEWS LETTER
Scroll